skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pei, Zhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cell patterning techniques play a pivotal role in the development of three-dimensional (3D) engineered tissues, holding significant promise in regenerative medicine, drug screening, and disease research. Current techniques encompass various mechanisms, such as nanoscale topographic patterning, mechanical loading, chemical coating, 3D inkjet printing, electromagnetic fields, and acoustic waves. In this study, we introduce a unique standing bulk waves-based acoustic cell patterning device designed for constructing anisotropic-engineered glioma tissues containing acoustically patterned human glioblastoma cell U251. Our device features two orthogonal pairs of piezoelectric transducers securely mounted on a customized holder. The energy of standing bulk waves generated from these transducers can be transmitted into the medium in a Petri dish through its bottom wall. Cells in the medium can be directed to the local minima of Gor’kov potential fields and trapped by the resultant acoustic radiation force. Through proof-of-concept experiments, we validate the functionality of our acoustic patterning device and assess the morphology and differentiation of U251 cells within the engineered glioma tissues. Our findings reveal that cells can be arranged in different distributions, such as parallel-line-like and lattice-like patterns. Moreover, the aligned cells exhibit more obvious elongation along the cell alignment orientation compared to the result of a control group. We anticipate that this study will catalyze the advancement in contactless cell patterning technologies within tissue engineering, facilitating the development of engineered tissues for applications in regenerative medicine and disease research. 
    more » « less
  2. Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J (Ed.)
    Anisotropic collagen-based biomaterials have gained significant attention in the fields of tissue engineering and regenerative medicine. They have shown great potential for wound dressing, corneal grafting, and exploring the mechanism of cancer cell invasion. Various external physical field-based methods for the fabrication of anisotropic collagen-based biomaterials have been developed, including electrospinning, microfluidic shearing, mechanical loading, and so on. In this study, we put forward an acoustic streaming-based method that uses acoustic wave-induced fluid streaming to control collagen self-assembly and fiber arrangement. Our acoustic device leverages a piezoelectric transducer to generate traveling acoustic waves in fluids, and the wave-fluid interaction further induces fluid streaming, known as acoustic streaming. If the fluid contains collagen macromolecules, the acoustic streaming is able to affect the collagen self-assembly process to create biomaterials containing directionally arranged collagen fibers along the streaming velocity direction. Therefore, this acoustic streaming-based method allows for manufacturing collagen hydrogel layers that contain acoustically arranged collagen fibers and have controlled anisotropic material properties. We performed a series of proof-of-concept experiments by using a fabricated acoustic device to control the self-assembly process of collagens loaded in a Petri dish. Our results show the effectiveness of arranging collagen fibers that follow the flow direction of acoustic streaming. To better understand the collagen manipulation mechanism, we used particle image velocimetry to characterize the acoustic wave-induced fluid streaming. We expect this study can contribute to the fabrication of collagen-based anisotropic biomaterials for biomedical applications. 
    more » « less
  3. Abstract Characterizing the mechanical properties of viscoelastic materials is critical in biomedical applications such as detecting breast cancer, skin diseases, myocardial diseases, and hepatic fibrosis. Current methods lack the consideration of dispersion curves that depend on material properties and shear wave frequency. This paper presents a novel method that combines noncontact shear wave sensing and dispersion analysis to characterize the mechanical properties of viscoelastic materials. Our shear wave sensing system uses a piezoelectric stack (PZT stack) to generate shear waves and a laser Doppler vibrometer (LDV) integrated with a 3D robotic stage to acquire time-space wavefields. Next, an inverse method is employed for the wavefield analysis. This method leverages multi-dimensional Fourier transform and frequency-wavenumber dispersion curve regression. Through proof-of-concept experiments, our sensing system successfully generated shear waves and acquired its timespace wavefield in a customized viscoelastic phantom. After dispersion curve analysis, we successfully characterized two material properties (shear elasticity and shear viscosity) and measured shear wave velocities at different frequencies. 
    more » « less
  4. Abstract Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter‐sized objects such as droplets, particles, and small animals exhibit limitations in translation resolution, range, and path complexity. Here, a novel acoustic vortex tweezers system is introduced, which leverages a unique airborne acoustic vortex end effector integrated with a three‐degree‐of‐freedom (DoF) linear motion stage, for enabling contactless, multi‐mode, programmable manipulation of millimeter‐sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery‐powered, to generate an acoustic vortex with a ring‐shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high‐energy ring. Moreover, The vortex tweezers system facilitates contactless, multi‐mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, It is anticipated that the tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio‐samples in biomedical and biochemical research. 
    more » « less